

Research Dossier: Larry Forsley / Global Energy Corp.

1. Executive Summary

This dossier provides a comprehensive assessment of the recent activities (2018-present) of Lawrence "Larry" P. Forsley, a senior experimental physicist, and his associated entity, Global Energy Corporation (GEC). Forsley is a central figure in a multi-decade, U.S.

government-sponsored investigation into Low Energy Nuclear Reactions (LENR), a field now being formally pursued by the National Aeronautics and Space Administration (NASA) under the designation of Lattice Confinement Fusion (LCF). LCF represents a novel approach to generating nuclear reactions within the crystalline lattice of a metal at or near ambient temperatures, a significant departure from mainstream "hot fusion" paradigms that rely on extreme heat and pressure. Global Energy Corp. is assessed not as a conventional commercial enterprise but as the primary corporate vehicle through which Forsley's government-backed research is managed and funded. GEC's role in facilitating NASA Space Act Agreements and its recent success in securing a National Science Foundation (NSF) Small Business Innovation Research (SBIR) grant underscore its function as a flexible public-private interface, designed for agility and to bypass bureaucratic hurdles. The central finding of this report is the identification of a nascent "gray track" scientific ecosystem being actively cultivated by the NSF. This is evidenced by the convergence of funding and a shared conference platform for three researchers exploring disparate "edge physics" for propulsion and energy: Larry Forsley (LCF), Charles Chase (UnLAB, Zero-Point Energy), and Richard Banduric (Field Propulsion Technologies, Novel Electrodynamics). A November 2024 NSF-hosted interagency meeting on disruptive technology is identified as a key indicator of a deliberate, low-signature government strategy to foster collaboration and innovation in these high-risk, high-reward fields.

2. Key Research Vectors (2018-Present)

An analysis of Forsley's public-facing research since 2018 reveals a focused and deliberate effort to validate and apply the principles of Lattice Confinement Fusion. This work is characterized by a progression from fundamental physics validation to the development of specific, dual-use applications.

2.1. Lattice Confinement Fusion (LCF): Mechanism and Validation

The core of Forsley's recent work is Lattice Confinement Fusion. The LCF mechanism utilizes a metal lattice, such as Erbium or Titanium, that is heavily loaded with deuterium fuel (a process known as deuterating the metal) to create a unique, high-density solid-state environment. Within this crystalline structure, the collective effect of the metal's electrons provides an enhanced "electron screening" effect, which significantly lowers the natural electrostatic repulsion (the Coulomb barrier) between the positively charged deuteron nuclei. This screening makes nuclear fusion reactions possible without the extreme temperatures ($>100,000,000$ K) and pressures required by conventional magnetic confinement (tokamak) or inertial confinement (laser) fusion approaches.

The fusion process in LCF is not spontaneous but is "triggered" by an external energy source, typically a photon beam (X-rays or gamma rays) that generates bremsstrahlung radiation within

the material. This energy is transferred to deuterons in the lattice, imparting them with sufficient kinetic energy to overcome the now-significantly-lowered Coulomb barrier and fuse with neighboring deuterons. This results in a "locally hot, globally cold" reaction, producing characteristic D-D fusion products, including neutrons with an energy of approximately 2.45 MeV and various energetic charged particles, which can be measured and verified.

A pivotal development in this field was the 2020 publication of two companion papers in the prestigious, peer-reviewed journal *Physical Review C*. These papers, co-authored by Forsley and his colleagues at the NASA Glenn Research Center, provided the first mainstream scientific validation for the LCF mechanism and its experimental results. This act of publishing in a high-impact journal represents a deliberate and successful strategy by NASA to move this research out of the scientific periphery, where it was long associated with the controversial "cold fusion" label, and into the realm of legitimate, verifiable nuclear physics. This legitimization provides the necessary foundation for attracting further funding, talent, and serious consideration for applied programs. Forsley's career serves as a critical bridge, representing the continuity of a quiet, long-term U.S. government interest that began with U.S. Navy LENR programs and has now matured into the NASA LCF project.

2.2. The Fusion-Fast-Fission Hybrid Reactor: A Dual-Use Application

Building on the validation of the LCF process, Forsley and GEC have proposed a specific dual-use application: a hybrid fusion-fast-fission reactor. This concept, detailed in a 2024 National Science Foundation SBIR award, proposes to use the energetic fast neutrons (specifically the 2.45 MeV neutrons from D-D fusion) generated by an LCF core to induce fission in materials that are not typically fissile in conventional thermal-neutron reactors, such as depleted uranium (U-238) or thorium (Th-232). Because the neutron source is external (the LCF core) and not reliant on a self-sustaining chain reaction within the fission fuel, the reactor is inherently sub-critical and cannot experience a runaway meltdown. This design offers a significant safety advantage over traditional critical reactors.

The stated commercial objectives of the SBIR project are to develop a clean energy source using abundant fuel (depleted uranium is currently a waste product) and to transmute long-lived radioactive waste from conventional nuclear plants into more stable or shorter-lived isotopes.

This work is not novel but represents the maturation of a concept with deep roots in the defense community, with prior related research funded by the U.S. Navy and the Defense Threat Reduction Agency (DTRA).

The dual-use implications of this technology are profound. While the SBIR proposal focuses on terrestrial energy and waste remediation, the underlying technology is a compact, inherently safe, and potentially self-fueling (via thorium breeding) nuclear power source that does not require enriched uranium. Such a device is a key enabling technology for a wide range of military and aerospace applications, including long-endurance naval vessel propulsion, power for remote forward operating bases, and, most critically, providing the megawatt-class onboard power required for future strategic platforms equipped with directed energy weapons or advanced propulsion systems. The funding from the NSF represents a strategic diversification of the research portfolio, allowing GEC to mature the core technology under a civilian energy mandate while its potential military applications remain latent and unstated.

2.3. The Role of Extended Electrodynamics (EED) and Pulsed Power

A significant indicator of the theoretical depth of the NASA LCF program is the explicit mention

of an "Extended Electrodynamics (EED) role" in technical presentations by Forsley and his team. While the specific EED theory is not detailed, its inclusion suggests the research team is exploring unconventional physics to explain their experimental results. The observed nuclear reaction rates in LCF experiments are anomalously high and are not fully accounted for by standard models of electron screening alone. The reference to EED indicates a willingness to consider more "fringe" theoretical frameworks to build a complete model of the underlying phenomena. This intellectual flexibility provides a direct thematic bridge to the work of other researchers in the emerging "gray track" ecosystem, such as Charles Chase (vacuum engineering) and Richard Banduric (novel electrodynamics), who also seek new physics to explain anomalous experimental data.

Furthermore, the nature of LCF as a "triggered" reaction implies a requirement for a compact pulsed power system. While it avoids the massive capacitor banks of tokamaks, a system is necessary to deliver the precise and repeatable energy pulse (e.g., from an electron gun or X-ray source) needed to initiate the fusion events within the lattice. This points to an underlying expertise in, and requirement for, compact, high-repetition-rate pulsed power technology, a field with extensive military applications.

3. Patent & Publication Analysis

The intellectual property and peer-reviewed publications connected to Forsley since 2018 demonstrate a clear and deliberate pathway from foundational research to validated science and applied development. The following table summarizes the key documents that form the public record of this technological maturation.

Identifier	Title	Date	Key Claim/Finding	Significance & Sources
U.S. Patent 8,419,919 B1	"System and method for generating particles"	2013 (Issued)	Describes an electrochemical co-deposition method for generating energetic particles (neutrons, charged particles) from a deuterated palladium lattice.	Foundational patent originating from US Navy (SPAWAR) work; cited as the basis for both NASA's LCF research and GEC's hybrid reactor concept.
<i>Physical Review C</i> 101, 044609	"Nuclear Fusion Reactions in Deuterated Metals"	2020	Provides the theoretical framework for LCF, detailing how electron screening in a metal lattice enhances fusion cross-sections and enables nuclear reactions.	Co-authored by Forsley; provides the essential theoretical underpinnings and scientific credibility for the LCF process.
<i>Physical Review C</i> 101, 044610	"Novel Nuclear Reactions"	2020	Presents the experimental	The companion paper to the theory

Identifier	Title	Date	Key Claim/Finding	Significance & Sources
	Observed in Bremsstrahlung-Irradiated Deuterated Metals"		evidence for LCF, showing the production of 2.45 MeV neutrons (a signature of D-D fusion) when deuterated metals are irradiated with a photon beam.	work; provides the empirical validation that moved LCF from theory to observable reality.
NSF SBIR Award 2423343	"A Fusion-Fast-Fission Reactor"	2024	Proposes to characterize the use of LCF-generated fast neutrons to fission depleted uranium in a safe, sub-critical hybrid reactor.	Marks the transition of the technology to a new funding agency (NSF) and a new application (terrestrial energy/waste remediation) under the corporate umbrella of GEC.

This intellectual property trail reveals a textbook example of how a sensitive technology is matured within the government's R&D ecosystem. The process began with a core patent developed under a military program (U.S. Navy SPAWAR). The concept was then transitioned to a civilian science agency (NASA) for rigorous, open-source validation, culminating in publication in a top-tier academic journal. This step served to legitimize the underlying science and separate it from historical controversy. With scientific credibility established, the technology is now mature enough to compete for applied research funding (NSF SBIR) through a small business entity (GEC) to develop a specific application. This pipeline demonstrates a patient, multi-decade, multi-agency strategy to develop this technology from concept to potential product.

4. Identified Government Funding & Collaborations

Forsley's research is supported by a complex, hybrid public-private network of government agencies, academic institutions, and corporate entities. This structure appears optimized to leverage the strengths of each sector.

4.1. U.S. Government Funding and Sponsorship

The funding for this line of research shows a clear progression across multiple government agencies over several decades. The foundational work was sponsored by the U.S. Navy (specifically SPAWAR, now NAVWAR, and the Naval Surface Warfare Centers) and the Defense Threat Reduction Agency (DTRA), which established the core concepts and the foundational '919 patent.

Since 2018, the primary sponsor has been NASA. Forsley holds a formal role as a Principal

Investigator and senior experimental physicist for the Lattice Confinement Fusion project at the Glenn Research Center (GRC) in Cleveland, Ohio. This work is funded by NASA's Science Mission Directorate (Planetary Science Division) and has also received support from the high-risk, high-reward NASA Innovative Advanced Concepts (NIAC) program, which is focused on deep space power and propulsion applications.

More recently, the National Science Foundation has emerged as a key sponsor. This is evidenced by the 2024 Phase I SBIR award to Global Energy Corp. for the hybrid reactor concept and by acknowledgements of support from specific NSF Program Directors, notably Anna Brady-Estevez, in technical presentations. This indicates a broadening base of support and interest across the U.S. government's scientific research enterprise, including participation in workshops with other high-level agencies like the Department of Energy's ARPA-E.

4.2. Institutional and Corporate Structure

Forsley operates within a unique triad of concurrent affiliations that allows him to bridge the government, academic, and private sectors:

1. **Global Energy Corp. (GEC):** Forsley serves as Chief Technology Officer of this private entity, which is registered in Annandale, VA, and San Diego, CA. GEC is the legal entity that receives the NSF SBIR grant and engages with NASA via formal Space Act Agreements, acting as the primary private-sector interface for his work. This entity must be carefully disambiguated from other similarly named organizations focused on energy policy, finance, or petroleum services, which have no connection to Forsley's research.
2. **NASA Glenn Research Center:** Forsley is a Principal Investigator and Senior Physicist, his primary government role. This position provides him with the legitimacy, access to federal laboratories, and resources of the U.S. government.
3. **University of Texas at Austin:** Forsley holds an appointment as a Research Fellow at the Nuclear Engineering Teaching Laboratory. This academic affiliation provides a platform for fundamental research, publication, and talent development, separate from the direct programmatic milestones of his government work.

This tripartite structure is not coincidental; it is an optimized configuration for a "gray track" researcher. His NASA employment provides institutional backing and credibility. His academic post at UT Austin allows for fundamental research and peer-reviewed publication. His role as CTO of GEC provides a nimble, private vehicle to pursue funding opportunities (like SBIRs) that are unavailable to him as a direct government employee and allows for the potential commercialization of the technology without the constraints of federal procurement regulations. GEC is the key enabler of this hybrid model, acting as the legal and financial entity that allows him to operate effectively across these institutional boundaries.

5. Intelligence Synthesis: Overlaps & Anomalies

The integration of all collected intelligence reveals a deliberate, government-fostered effort to cultivate an ecosystem of researchers exploring unconventional physics for energy and propulsion. This effort is characterized by thematic overlaps between seemingly disparate research tracks and is being actively stewarded by the National Science Foundation.

5.1. Thematic Overlaps: A Shared Quest for Propellant-less Propulsion

Despite their vastly different scientific approaches, Forsley, Charles Chase (UnLAB), and

Richard Banduric (Field Propulsion Technologies) are all fundamentally pursuing the same strategic objective: developing novel energy sources and propellant-less propulsion by manipulating fundamental physical fields.

- **Larry Forsley (LCF):** Aims to harness **nuclear forces** within a metal lattice, with propulsion derived from the directed kinetic energy of charged fusion products.
- **Charles Chase (UnLAB):** Aims to harness **quantum vacuum forces** (Zero-Point Energy) using asymmetric nanostructures, with propulsion derived from converting vacuum fluctuations into kinetic energy. His extensive background at Lockheed Martin Skunk Works® also includes work on compact fusion, providing a direct connection to the broader field.
- **Richard Banduric (FPT):** Aims to harness **electromagnetic forces** in a novel way, with propulsion derived from creating unbalanced forces via the manipulation of relativistic electric fields in conductors.

From a strategic R&D portfolio perspective, these three researchers represent distinct bets on achieving a revolutionary breakthrough. Forsley's LCF is the most experimentally grounded but may face challenges in scaling. Chase's ZPE work is theoretically compelling but experimentally nascent. Banduric's electrodynamic work is the most unconventional. A government agency seeking to de-risk its pursuit of a breakthrough capability would logically want to fund all three parallel explorations of the same problem space.

5.2. Indicator of Interest: The National Science Foundation (NSF) as an Ecosystem Cultivator

The central intelligence assessment of this dossier is that the National Science Foundation is acting as a key node connecting these researchers and cultivating this ecosystem. This assessment is based on a three-part convergence of evidence:

1. **Common Funding:** The NSF has directly funded at least two of the three principals via its SBIR program: Banduric (FPT) with a Phase I award in 2022 and a Phase II award in 2024, and Forsley (GEC) with a Phase I award in 2024.
2. **Common Patronage:** A specific NSF Program Director, Anna Brady-Estevez, is explicitly acknowledged for her support in Forsley's technical presentations, indicating a specific champion for this type of research within the agency.
3. **Common Venue:** All three principals—Forsley, Chase, and Banduric—were brought together as presenters at the November 2024 NSF-hosted interagency meeting on "disruptive technology," which had a specific focus on Unidentified Anomalous Phenomena (UAP).

This pattern is too structured to be coincidental. It points to a deliberate strategy by the NSF to act as an incubator for research that is too speculative for mainstream academic funding and perhaps too unconventional even for DARPA's traditional portfolio. The framing of the interagency meeting around UAP provides the perfect justification; it creates a "need to know" and a national security rationale for exploring these "fringe" propulsion and energy concepts. The NSF appears to be not just funding individual projects but actively building a community and fostering the cross-pollination of ideas among these researchers. This represents the emergence of a new, identifiable "gray track" ecosystem under the stewardship of the NSF.

5.3. Actionable Intelligence Gaps for Further Investigation

The preceding analysis identifies several high-priority intelligence gaps that require further

investigation to fully map this emerging ecosystem.

1. **Nature of NSF-Fostered Collaboration:** What was the specific nature and outcome of the interactions between Forsley, Chase, and Banduric at the November 2024 NSF meeting? Were any formal or informal follow-on collaborations, data sharing agreements, or joint proposals established? Understanding the degree of cross-pollination is the most critical remaining gap.
2. **Operational Scope of Global Energy Corp.:** What is the full corporate structure, leadership team (beyond Forsley), and financial standing of Global Energy Corp.? Is the entity structured to receive classified funding, and does it have any undisclosed commercial or government partners that would indicate a deeper integration into the defense-industrial base?
3. **The EED-LCF Technical Link:** What specific theory of Extended Electrodynamics (EED) is being used or explored by the NASA LCF team to explain their results? Does this theory have any direct mathematical or conceptual overlap with the vacuum fluctuation models pursued by Chase or the electrodynamic theories of Banduric? Answering this would define the precise scientific linkage, if any, between these research vectors.

Works cited

1. Dr Larry Forsley: Journeys of Discovery - Solid State Fusion, <https://solidstatefusion.org/2023/07/interview-larry-forsley/>
2. Volume 38 - Journal of Condensed Matter Nuclear Science, <https://jcmns.org/api/v1/articles/124937-the-history-of-lenr-research-at-nasa-glenn-research-center.pdf>
3. Room Temperature Fusion is Here - Lawrence Forsley, ****, DemystifySci #349 - YouTube, <https://www.youtube.com/watch?v=djDygoBQ1IM>
4. Lattice Confinement Fusion & Fast Fission for Space - NASA ..., <https://ntrs.nasa.gov/api/citations/20250000180/downloads/US%20Disruptive%20Deeptech%20Space.pdf>
5. Award | SBIR, <https://www.sbir.gov/awards/208320>
6. National Science Foundation Hosts Interagency Meeting on ..., <https://thedebrief.org/national-science-foundation-hosts-interagency-meeting-on-disruptive-technology-with-uap-in-focus/>
7. 1 NASA GRC Hosts Lattice Confinement Fusion Virtual Workshop Theresa L. Benyo1, Lawrence P. Forsley2, Leonard Dudzinski3, and Ma, <https://ntrs.nasa.gov/api/citations/20205006546/downloads/LCF%20Workshop%20-%20May%2021%202020%20-%20Final%20Public.pdf>
8. Nuclear Fusion Reactions in Deuterated Metals - Glenn Research ..., <https://www1.grc.nasa.gov/wp-content/uploads/TP-20205001617-Theory-Paper-Final.pdf>
9. Novel Nuclear Reactions Observed in Bremsstrahlung-Irradiated ..., <https://www1.grc.nasa.gov/wp-content/uploads/TP-20205001616-Experiment-Paper-Final.pdf>
10. US Space Disruptors Day "Moonfra", Infrastructure, Energy and Resources Session 12/18/2024 Early copy of slide dissemination - Squarespace, <https://static1.squarespace.com/static/668ee027e0d3ec505670fb56/t/6765faa2f4d55f548842ec29/1734736563698/6th+session+Moonfra+US+Space+Disruptors+Day+2024+12+18+1023.pdf>
11. Space Application of the GeNIE HybridTM Fusion–Fission Generator - ResearchGate, https://www.researchgate.net/publication/386396267_Space_Application_of_the_GeNIE_Hybrid_TM_Fusion-Fission_Generator
12. Lawrence FORSLEY | Research Fellow | University of Texas at Austin, Austin | UT | Nuclear Engineering Teaching Laboratory | Research profile - ResearchGate, <https://www.researchgate.net/profile/Lawrence-Forsley>
13. WHAT IS PULSED POWER . . . - Sandia National Laboratories,

<https://www.sandia.gov/app/uploads/sites/194/2022/01/VanArdsallPulsedPower072984p.pdf> 14. White Paper Lattice Confinement Fusion and Fusion-Fast-Fission Energy Source Development L.P. Forsley1,2, T. L. Benyo3, P. A. Mo, <https://ntrs.nasa.gov/api/citations/20210026340/downloads/White%20Paper%20regarding%20L> CF%20and%20Fusion-fast-fission.pdf 15. Shortcut to Fusion: No more magnets, no more lasers? - Anthropocene Institute, <https://anthropoceneinstitute.com/2022/03/shortcut-to-fusion/> 16. US Space Disruptors Day Extended Electrodynamics (EED), Advanced Physics, & (U)AP Segment 12/18/2024 Early copy of slide dis - Squarespace, <https://static1.squarespace.com/static/668ee027e0d3ec505670fb56/t/6765fa33a7dfa226108bee99/1734736450034/4th+Session+EED+UAP+with+all+presentations+including+pre+Space+Disruptors+Day.pdf> 17. Larry Forsley, <http://www.pacinternational.org/larry.html> 18. Global Energy Institute | U.S. Chamber of Commerce, <https://www.uschamber.com/program/global-energy-institute> 19. Global Energy Center - Atlantic Council, <https://www.atlanticcouncil.org/programs/global-energy-center/> 20. Research - Global Energy Metals Corp., <https://globalenergymetals.com/investors/research/> 21. Global Energy Research - Enerdata, <https://www.enerdata.net/research/global-energy-research.html> 22. Global Energy Research & Development Inc.: Home, <https://www.globalenergyrd.com/> 23. Center on Global Energy Policy at Columbia University SIPA | CGEP, <https://www energypolicy.columbia.edu/> 24. Advanced Propulsion & Zero-Point Energy at the UnLAB ..., <https://www.altpropulsion.com/advanced-propulsion-zero-point-energy-at-the-unlab/> 25. There is no 1: Charles Chase at TEDxCollegeoftheCanyons - YouTube, <https://www.youtube.com/watch?v=IOfdeJ7uIMw> 26. Charles Chase on energy for everyone - YouTube, <https://www.youtube.com/watch?v=JAsRFVbcyUY> 27. Richard Banduric - Alternative Propulsion Engineering Conference, <https://www.altpropulsion.com/people/richard-banduric/> 28. SBIR Phase I:Advanced Propellant-less propulsion system for ..., <https://www.highergov.com/grant/2213139/> 29. Richard Banduric - National Science Foundation, <https://nsf.elsevierpure.com/en/persons/none-banduric>